REDUCTION OF β -HYDROXYSULFOXIDES: APPLICATION TO THE SYNTHESIS OF OPTICALLY ACTIVE EPOXIDES

Guy Solladié^{*},Gilles Demailly and Christine Greck Ecole Nationale Supérieure de Chimie (ERA 687),Université Louis Pasteur 67008 STRASBOURG - FRANCE

<u>Abstract</u>. β -hydroxysulfoxides of opposite stereochemistry can be prepared in very high diastereoisomeric excesses (90 to 95%) by reduction of β -ketosulfoxides with DIBAL or DIBAL/2nCl₂. A very efficient method to transform these reduction products into optically active epoxides is also described.

Recently we have shown that optically active β -ketosulfoxides are convenient intermediates for the synthesis of both enantiomers of methylcarbinols in high ee,through reduction with LiAlH₄ or DIBAE^I. The same methodology was also applied to prepare optically active allylic alcohols².

We now report an improvment of this reduction process giving higher asymmetric induction (90 to 95%) and also a very efficient method to transform the resulting β -hydroxysulfoxides into optically active epoxides which are useful chiral synthons.

Scheme 1

As shown in Table I, reduction of β -ketosulfoxides <u>la,R</u> and <u>lb,R</u> with DIBAL according to procedure A (addition at $-78^{\circ C}$ of <u>l</u> in THF to a solution of DIBAL) afforded diastereoisomers <u>3a,RS</u> and <u>3b,RS</u> in respectively 60 and 74% d.e.The new procedure B (addition of DIBAL to <u>l</u> in THF at $-78^{\circ C}$) increased significantly the d.e. to 90 and 86%.

In sharp contrast, LiAlH_4 reduction of <u>la</u> and <u>lb</u> lead mainly to the other diastereoisomers <u>2a,RR</u> and <u>2b,RR</u> in 60 and 78% d.e.More interesting is the fact that the addition of DIBAL to a solution of <u>la</u> and <u>lb</u> in THF containing one equivalent of anhydrous zinc chloride at -78°^C gave still the diastereoisomers <u>2a,RR</u> and <u>2b,RR</u> but with more than 90% d.e.

Similar results were obtained from the β -ketosulfoxides <u>lc,R</u> and <u>ld,R</u>.

TABLE I

R	Reducing Agent	β-hydroxysulfoxides	Yields%
		2, <u>RR</u> / <u>3</u> , <u>RS</u>	
<u>la</u> , C ₆ H ₅	DIBAL, method A	20 / 80	95
	DIBAL, method B	> 5 / 95	95
	LiAlH ₄	80 / 20	80
	DIBAL,ZnCl ₂	> 95 / 5	90
<u>1</u> ь, с ₆ н ₅ сн ₂ сн ₂	DIBAL, method A	13 / 87	98
	DIBAL, method B	7 / 93	95
	LiAlH	88 / 12	90
	DIBAL, ZnCl ₂	> 95 / 5	95
$\frac{1c}{n-C_8H_{17}}$	DIBAL, method B	5 / 95	95
	DIBAL, ZnCl ₂	> 95 / 5	92
<u>ld</u> , n-C ₁₃ H ₂₇	DIBAL, method B	5 / 95	95
	DIBAL,ZnCl ₂	> 95 / 5	95

Reduction of β -ketosulfoxides <u>1</u>,<u>R</u>

The different stereochemistry of these reductions according to the nature of the reducing agent can be understood in terms of different conformations of the β -ketosulfoxide.

In absence of any chelating metal, the reduction is expected to occur in the conformation 5 because of dipolar interactions, the hydride entering the side where the sulfoxide lone pair is located (giving the diastereoisomer \underline{RS}) while in presence of Li⁺ or Zn⁺⁺, the β -ketosulfoxide is expected to adopt the chelated conformation <u>6</u> which, the hydride entering again the lone pair side, leads to the diastereoisomer RR.

The diastereoisomeric ratios 2/3 were always determined by ¹H NMR at 200 MHz of the crude product from the diastereotopic protons of the methylene group α to the sulfoxide, giving non equivalent ABX system in each diastereoisomer.

The absolute configuration of 2a, RR was known³, while that of 2b, RR was determined by desulfurization with Raney nickel to the known 4-phenyl 2-butanol⁴. Finally, those of 2c, RR and 2d, RR were deduced from NMR characteristics in CDCl₃: a smaller non equivalence for the CH₂ α to the sulfoxide group was always observed in the diastereoisomer $RR^{1,2,6}$; as well as a more deshielded signal for the proton α to the hydroxyle.

The β -hydroxysulfoxides were then reduced to the corresponding sulfides with one equivalent of LiAlH₄ at room temperature for 6 hours (80% yield).The crude sulfide was then treated by one equivalent of trimethyloxonium fluoroborate in THF at room temperature and then by a solution of HONa for one hour giving the corresponding epoxide in 80% yield (Scheme 1).All these reactions can be conducted on the crude products.

Epoxides <u>4a</u> and <u>4c</u> (Table II) were already prepared by Pirkle⁵ through chromatographic resolution of the β -hydroxysulfide.The absolute configurations are consistent with our assignment as well as the optical rotations.

TABLE II

R	Reducing Agent	Epoxide <u>R/S</u>	Yield [*] *	$ \alpha _{D}$ (solvent)
<u>4a</u> , C ₆ H ₅	DIBAL,method B	5 / 95	60	- 44°(ØH) ^a
	DIBAL,ZnCl ₂	95/ 5	60	+ 45°(ØH)
<u>4c</u> , n-C ₈ H ₁₇	DIBAL, method B	>5/95	63	+ 9°(CHCl ₃) ^b
	DIBAL, ZnCl ₂	>95/ 5	67	- 9.2°(CHCl ₃)
<u>4d</u> , n-C ₁₃ H ₂₇	DIBAL, method B DIBAL, ZnCl ₂	$\sum_{95/95}^{5/95} 5$	65 70	+ 3°(CHCl ₃) - 3°(CHCl ₃)

Optically active epoxides 4,R and 4,S

*Yield calculated from the starting β -ketosulfoxide. a) $|\alpha|_{max} = 47^{\circ}(ref.5)$. b) $|\alpha|_{max} = 8.8^{\circ}(ref.5)$. c)From the d.e. of <u>3</u>.

The 60 to 70% overall yields, calculated from the starting β -keto-sulfoxides and the extremely high asymmetric induction step make this synthesis very attractive to prepare optically active epoxides.

BIBLIOGRAPHY:

- 1)G.SOLLADIE,C.GRECK,G.DEMAILLY,A.SOLLADIE-CAVALLO,Tetrahedron Letters 1982, 23,5047.
- 2)G.SOLLADIE,G.DEMAILLY,C.GRECK,J.Org.Chem. in press.
- 3)G.I.TSUCHIHASHI,S.IRIUCHIJIMA,M.ISHIBASHI,Tetrahedron Letters 1972,4605.
- 4) R.H.PICKARD, J.KENYON, J.Chem.Soc. 1914, 1115.
- 5) W.H.PIRKLE, P.L.RINALDI, J.Org. Chem. 1978, 43, 3803.
- 6) G. DEMAILLY, C. GRECK, G. SOLLADIE, Tetrahedron Letters 1984, 25, 4113.

(Received in France 24 October 1984)